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The implementation of a low frequency line source as a source function in the
finite difference time domain (FDTD) method is presented. The total–scattered field
formulation is employed, along with a recently developed quasi-static formulation of
the FDTD. Line-source modeling is important in the utility industry, where a more
accurate prediction of the fields induced in workers in close proximity to power
lines is required. The line-source representation is verified, and excellent agreement
with analytic solutions is found for two object problems. A practical example of the
electric fields and current densities induced in a human body in close proximity to
a 60-Hz transmission line is evaluated. The results for predicted organ dosimetry
for such a configuration are compared with predictions for the uniform electric field
and demonstrate the induced fields and current densities can be significantly higher
than originally predicted for the uniform electric field exposure on a ground plane.
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1. INTRODUCTION

The problem of human exposure to low frequency electromagnetic fields has been the
subject of many studies and numerical simulations. The methods used for such numeri-
cal simulations range from integral equation (IE) methods, through finite difference (FD)
techniques, to finite element methods (FEM). In all cases, advantage is taken of the quasi-
static nature of the fields (and hence the quasi-static approximation to Maxwell’s equa-
tions). IE methods are efficient for homogeneous shapes, but can require excessively large
(possibly ill-conditioned) matrices when applied to large heterogeneous structures. FD
methods are more flexible but can suffer from staircasing errors with the discretization

82

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press
All rights of reproduction in any form reserved.



LOW FREQUENCY FDTD WITH LINE-SOURCES 83

of the object. Such staircasing errors can be effectively mitigated by the use of FEM be-
cause it lends itself well to adaptive mesh systems and mesh refinement. In general at
low frequencies, Darwin approximations can be made [1] which provide elliptic equations
from the modified Maxwell’s equations, or Stevenson’s method as outlined in [2] can be
used.

In the case of high resolution numerical studies of the human body in the low-frequency
field of a powerline, all three methods mentioned above produce enormous matrices to be
solved. They are often not sparse because of the heterogeneity of the structure involved.
Moreover, FD and FEM methods suffer from the lack of adequate free-space boundary
conditions necessary to terminate the computational domain close to the body. As a re-
sult, the domain must be stretched to a distance of three times the body dimensions,
thus increasing the volume by a factor of nine and further hampering the computational
speed. The sheer size of the matrices makes it challenging at high resolution to avoid ill-
conditioning.

In contrast, the finite difference time domain (FDTD), since its introduction by Yee
[3], has been used extensively to model electromagnetic field interactions with complex
heterogeneous structures. The FDTD technique has proven to be very flexible and effective
in dealing with complex and dynamic problems, is easy to use, and is effective. It has become
widespread and has been the subject of immense development over the past decades. A
multitude of source functions for complex source geometries have also been successfully
developed over the past 30 years. A major step forward in development of these source
functions was the introduction of the total–scattered field formulation by Taflove [4]. This
formulation allows for algorithms to efficiently implement uniform plane waves incident
from arbitrary directions. This is particularly important for modeling problems where both
the total and scattered fields are of interest.

In its classical form, the FDTD is not a very attractive method at low frequencies. The
required simulation times may be prohibitively long even for moderate spatial resolution.
However, at sufficiently low frequencies, and for suitable object dimensions and electrical
properties, a recently proposed formulation [5] overcomes that problem. This formulation
holds for quasi-static conditions, where the wavelength and skin depth are much greater than
the size of the structure under consideration. It is also assumed that parts of the structure
can be represented either as good conductors or as good dielectrics. The structure itself can
be heterogeneous, but in any given part either the conduction or displacement current has
to dominate to the extent that the other current component can be neglected (preferably it
is below 0.1%). Under these conditions, the fields in the conductors are proportional to the
time derivative of the incident field, and in dielectrics the induced fields follow the applied
field temporal behavior. The field response needs to be computed separately for the electric
and magnetic field. In practice, at low frequencies, the response to the electric or magnetic
field alone is of interest anyway. By creating a standing wave condition, electric or magnetic
field exposure can thus be studied in isolation.

For plane wave excitations with a ramp function, accurate results can be extracted imme-
diately after the transient response has decayed, typically after 1000–4000 time steps [5]
(i.e., a fraction of the signal period). A properly designed perfectly matched layer (PML)
originated by Berenger [6] provides efficient low reflection termination of the computational
space for this type of problem [7–9].

The quasi-static formulation of the FDTD was developed for evaluation of electric fields
induced in the human body from exposure to powerline-frequency uniform electric fields.
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The computations had to be performed with high resolution to identify organs that might
have higher fields than the average. Thus the resolution used in the FDTD was 7.2 mm
[5]. When the FDTD was hybridized with an efficient FD code, resolution of 3.6 mm was
easily achieved with high accuracy [10]. This FD method was not hampered by the free
space boundary conditions because the boundary condition was at the body surface and was
simply the charge density developed by the exterior problem based on the lower resolution
FDTD run. In some occupational situations, such as those in electric utility substations,
workers on the ground are too close to the high voltage conductors for the exposure fields
to be assumed to be uniform.

Although the total–scattered field formulation has so far been utilized for uniform plane
wave excitation only, there is no reason why it cannot be extended to other excitations for
which analytic solutions exist. We have previously demonstrated that we can implement
the solution for an infinite line source at an arbitrary distance and orientation [11]. This
modification to the FDTD program is important, since it allows for the prediction of fields
and currents induced in utility workers in close proximity to powerlines. This in turn gives
a more accurate picture of the hazards they are exposed to on a daily basis. The formulation
of the line source in the FDTD may also be applied to other problems involving scattering
from heterogeneous objects.

In this contribution the theory and implementation of the new line-source algorithm are
outlined in detail, followed by a comprehensive verification. This includes comparisons
with recently developed analytic solutions for a homogeneous lossy sphere in proximity
of a current-carrying infinite conductor or an infinitely long uniform line of charge. The
results referenced in [11] dealt specifically with the case of magnetic induction. Here we
look at additional results for magnetic inductions and present results for electric induction.
A discussion of staircasing errors and their impact are included, as well as methods of
mitigating their effects. Finally, results are given for a high resolution heterogeneous model
of the human body under a line source for electric field exposure (exposure to nonuniform
magnetic fields can be efficiently evaluated by FD methods [12]).

2. THEORY

2.1. Quasi-static FDTD Method

Quasi-static approximations can be applied when the dimensions of the object of study
are a fraction of a wavelength. Since using the quasi-static approximation implies that
the electric and magnetic fields become decoupled, it is possible to study their effects in
isolation. If one were to attempt to study extremely low frequency problems using the
standard FDTD formulation, simulation times on the order of a few periods of the source
would have to be used to reach steady state. For instance, for a problem at 60 Hz, with spatial
discretizaton of1x=1y=1z= 0.5 cm, from the Courant stability criterion, the duration
of one time step would be1t =1x/

√
3c= 9.6 ps. Allowing for four periods of the source

field, the number of time steps required for the simulation would beN1t = 7×109. Even on
a fast computer, the simulation would run for over one hundred years. For some simulations
frequency scaling is used, but this approach has limitations—among them is that the fields
are not decoupled. However, quasi-static approximations can be used to advantage in certain
situations with the FDTD method, and thus the prohibitively long simulation time constraint
is removed.
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The quasi-static FDTD method as introduced in [5] is only briefly summarized here. The
standard FDTD algorithm can be used to advantage with certain objects, since the phase
relationships of fields in good conductors and dielectrics is known. Because conduction cur-
rents dominate displacement currents in conductors, and the opposite is true in dielectrics,
the steady-state behaviour of fields can be predicted beforehand. Fields external to a con-
ductor have the same phase as an incident field, whereas interior fields are first order in
the quasi-static approximation and are therefore proportional to the time derivative of the
incident field. By using a ramp function (which can be interpreted as an approximation to
the start of a sinusoid), all fields in steady state attain either a linear (in good dielectrics) or a
constant (in conductors) time behaviour after a short simulation time (a fraction of a period
of the approximated sinusoid). To obtain a solution, it is therefore sufficient to obtain field
values at two time steps after the transient response has decayed.

To reduce high-frequency contamination in simulations, a smoothed ramp function is
used for the incident electric fieldEinc,

Einc =


0 −∞ < t ≤ t0
cosh(t − t0)− 1 t0 < t ≤ τ
A× (t − τ)+ h t > τ,

(1)

wheret is the time increment,t0 is the starting point of the ramp (usually zero), andA is
the desired slope of the ramp which is related to the peak amplitude and frequency of the
sinusoid that is approximated. The constantsτ andh are dependent on simulation parameters
such as the grid and time discretization and serve to preserve continuity between the three
sections of the ramp function.

In a standard FDTD program, the use of a single plane wave necessarily implies the
fields are coupled. Quasi-static exposure can still be accomplished by creating a standing
wave within the FDTD domain: exciting two plane waves in opposite directions using the
total–scattered field formulation. By controlling the phase and amplitude, exposure either
to only electric or magnetic fields can be created within a limited volume with dimensions
much smaller than the wavelength.

In summary, the quasi-static FDTD method may be used when:

(i) in the object of study either the conduction or the displacement current dominates
the other; and

(ii) the size of the object is much smaller than the incident field wavelength.

When these conditions are satisfied, electric or magnetic field exposure can be studied
in isolation by creating an appropriate standing wave condition and by utilizing a ramp
excitation function. It is important to note that the underlying FDTD method’s numerical
implementation (code) has not been modified: it is merely the utilization of a ramp function
excitation and the creation of a standing wave that mimic quasi-static circumstances. The
resultant fields must then be properly post-processed (i.e., scaling and/or differencing) to
provide proper quasi-static results.

2.2. Mathematical Basis of Transient Response

From Maxwell’s equations in the quasi-static limit it can be found that the time to steady
state for electric or magnetic exposure is governed by relaxation or diffusion equations,
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respectively. For each, there is a characteristic time constant which governs the transient
response or, conversely, marks the transition to steady state. These time constants are
τrelaxation= ε

σ
andτdiffusion=µσ l 2, whereε is the dielectric constant,σ is the conductiv-

ity, µ is the permeability, andl is the largest characteristic dimension of the object (i.e.,
diameter for a sphere). This in turn indicates when steady state is reached and when the
simulation can be halted.

Although the exposure processes are governed by either relaxation or diffusion in real
life, in the FDTD the coupling of the magnetic and electric fields cannot be separated to
perfectly simulate a quasi-static situation. This can be accomplished indirectly by creating
a standing wave, but both field vectors are still excited. For the case of a lossy object with
conductivity, but relative permittivity and permeability of one, the diffusion time constant
dominates. And so for both types of FDTD simulations (standing wave created for magnetic
or electric exposure) the time to reach steady state is governed by the diffusion constant.

2.3. Total–Scattered Field Formulation

As outlined by Stratton [13],

An electromagnetic field is uniquely determined within a bounded regionV at all timest > 0 by the
initial values of electric and magnetic vectors throughoutV , and the values of the tangential component
of the electric vector (or magnetic vector) over the boundaries fort > 0.

This provides the basis of the total–scattered field formulation introduced by Taflove
[4]. In this formulation, splitting the computational domain into two regions separated by
a Huygen’s surface modifies the standard Yee algorithm [3]. Inside this closed surface
the updated field values are still total fields, but outside the surface there are only scattered
fields. By specifying the initial field values for the entire domain (usually zero), the tangential
electric or magnetic field vectors at the Huygen’s surface for allt > 0 can be specified, thus
uniquely determining domain field values for all timest > 0.

The Huygen’s surface field values can be decomposed into a scattered field component
and an incident field component. The incident field values are derived from the source
function. In the previously derived uniform plane wave source, the fields are uniquely
specified by three fixed angles(φ, θ, ψ) which define the direction of propagation and the
polarization of the electric field vector with respect to that direction. The anglesφ andθ
are the standard spherical coordinates (azimuth and elevation). The reference direction for
ψ is the vectork × z wherek is the incident wave vector direction, andψ is measured
clockwise (when looking towards the source) from the reference. This defines the electric
field polarization on the transverse plane as illustrated in Fig. 1.

For the uniform plane wave formulation [4], a computationally efficient way to specify
the incident wave components is through the use of an alternate one-dimensional source
grid valid for propagation directions defined by the angles(φ, θ, ψ). Incident electric and
magnetic field values on the Huygen’s surface are then specified by interpolation of the field
value in the source grid and implementation of appropriate connecting conditions. These
connecting conditions are the Yee update equations, modified to incorporate an incident
field component and a scattered field component.

The incident field vectors lie in planes transverse to the direction of propagation, at
distancesd along the source grid. Hence the incident fields must be transformed to Cartesian
coordinates to be consistent with the Yee grid. The intersection of the Huygen’s surface and
these planes defines contours on which, for a uniform plane wave, all electric and magnetic
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FIG. 1. Illustration of how the reference angles(φ, θ, ψ) are defined for an arbitrary incident wave vectork.

fields are identical. The appropriate equations for a uniform plane wave are [4]

Hx,inc|nd = Hinc|nd × (sinψ sinφ + cosψ cosθ cosφ) (2a)

Hy,inc|nd = Hinc|nd × (−sinψ cosφ + cosψ cosθ sinφ) (2b)

Hz,inc|nd = Hinc|nd × (−cosψ sinθ) (2c)

Ex,inc|nd = Einc|nd × (cosψ sinφ − sinψ cosθ cosφ) (2d)

Ey,inc|nd = Einc|nd × (−cosψ cosφ − sinψ cosθ sinφ) (2e)

Ez,inc|nd = Einc|nd × (sinψ sinθ), (2f)

whereHinc|nd andEinc|nd are the incident magnetic or electric field, respectively, at a distance
d along the source grid and at time stepn. For this uniform plane wave implementation the
angles are fixed for all locations on the Huygen’s surface.

2.4. Line-Source Implementation

The line-source implementation as reported in [11] is summarized here. For an infinite
line of charge or current at a low frequency, the fields have a cylindrical TEM configuration.
On a plane perpendicular to the line, the fields have magnitudes inversely proportional to
the distance from the line and have a radial electric field and a circumferential magnetic
field. These fields are thus transverse planar with their polarization dependent on their point
in space with respect to the line. This immediately suggests how to modify Eqs. (2) to
reflect this cylindrical TEM configuration. The source field values for the Huygen’s surface
are still transformed using (2), with the modification that the angleψ is dependent on the
distance vectord between that point in space and the line:ψ = ψ(d). The TEM fieldF,
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FIG. 2. Visualization for the angleψ for a source wave (from a line source) in thex̂ direction. Note the
orientation of the vector couplet.

whereF represents either the magnetic or electric field, can then be represented as:

F = 1

|d|F(ψ(d)). (3)

Without loss of generality, it can be assumed that the infinite line source is oriented
parallel to thex-axis and passes through the point(yh, zh). Then for any point on the
Huygen’s surface(x, y, z), to specify the incident field value, the scale factor is found as:

|d| =
√
(z− zh)2+ (y− yh)2. (4)

Also, to resolve the fields into three Cartesian components, Eqs. (2) still hold, with the
modification that the angleψ is

ψ(y, z; yh, zh) =
arctan

(
z−zh
y−yh

)
k = −x̂

arctan
(

z−zh
yh−y

)
k = +x̂

(5)

depending on the direction of the source wave. This is visualized in Fig. 2 for ayz-plane
(x = a)perpendicular to the direction of propagation, with(yh, zh)being the origin. For this
case, the source wave is travelling in the positivex-direction, and so the reference direction
for polarization is the negativey-direction. It can be noted that a mutually perpendicular
vector couplet of the electric and magnetic fields for a given point in space rotates through
the angleψ with the distance vector.

A standard FDTD code can thus be modified to implement this line source. It is a simple
procedure to modify the standard plane wave source implementation to allow for such a
case. In this case, the angleψ is no longer fixed for all points on the Huygen’s surface, but
changes depending on the point location with respect to the line.

2.5. Staircase Errors

Approximation of smooth boundaries by cubic voxels associated with FDTD is well
known to result in computational errors. There have been a number of reports on techniques
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that employ mesh refinement in the context of FDTD methods. They can be roughly divided
into four groups:

1. Mesh refinement techniques (e.g., subgridding and graded meshes);
2. Locally conformal meshes;
3. Subcell models; and
4. Finite volume techniques (FVTD).

The methods in the first group do not effectively address the issues because they simply
increase the density of the mesh while retaining the underlying staircase approximation.
Locally conformal meshes are successful for PEC boundaries. High frequency applications
of such conformal meshes have been applied to dielectric interfaces, but they had a small
effect on accuracy. Subcell modelling considers an effective dielectric constant for cells not
aligned with cell boundaries based on weighted flux averaging through a cell face. Such
techniques are again successful in high frequency applications of FDTD, but fail in the
low-frequency as pointed out in [16]. Finally, the FVTD approach (or a hybrid method) can
solve the staircase problem in question but this involves a different numerical technique
which is beyond the scope of this paper.

Regardless of the refinement techniques available, the main staircasing error in the quasi-
static method occurs where the conductivity gradient is highest—normally the air–conductor
interface. Since we are interested mainly in the internal organ dosimetry, staircasing errors
are not absolutely critical for these types of problems. As such, subcell averaging will suffice
for the problem at hand.

3. METHOD VERIFICATION

3.1. Fields in Free Space

First the cylindrical TEM line-source implementation was validated by exciting an empty
computational domain (free space) with the infinite line-source function. To model this
situation, a domain of 20× 110× 110 cm was utilized, with a grid resolution of 1 cm in
each direction. The line source was oriented in thex-direction, centered 50 cm over the
domain, i.e.,(yh, zh)= (55 cm, 155 cm). The domain was terminated by a PML (6, P, 40dB)
(six layers, with a parabolic profile, and with 40-dB attenuation for normal incidence) on
all sides. The time excitation was the function given by Eq. (1). The simulation was run for
200 time steps to allow for the wave to fully traverse the domain. The fields atN1t = 200
were then compared with the analytic solution. As shown in Table I, the resultant fields are
in excellent agreement globally with the analytic results. As expected, the Cartesian mesh
representation of cylindrical fields introduces longitudinal fields that are nonphysical, but

TABLE I

Relative Errors in Electric Field for the Empty Domain

Maximum Average

Grid resolution Horizontal (y) Vertical (z) Horizontal (y) Vertical (z)

Coarse (2 cm) 0.0910% 0.0188% 0.0078% 0.0022%
Fine (1 cm) 0.0114% 0.0036% 0.0018% 0.0005%
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they are negligibly small, i.e., on the same order of magnitude as the error fields in the
transverse directions.

3.2. Conductive Sphere

Recollecting that the motivation for this work is to investigate electric fields induced in
humans at powerline frequencies by a line-source, it is relevant to model a simple object for
which the problem has an analytic solution, e.g., a conductive sphere of a size comparable to
the human body. The material parameters of the sphere are also chosen to represent nominal
values in the human body.

In order to validate the FDTD method at low frequencies for the line source, both the
electric field and the magnetic field exposures are investigated. Comparisons are made based
on average, root mean square (RMS), and maximum induced electric fields in the sphere.
The closed form solutions for fields induced in a homogeneous lossy sphere by an infinite
current line (magnetic field) and an infinite line of charge (electric field) are reported in
[14, 15]. The relative and absolute errors are also investigated to establish validity of the
method and to identify locations of large errors.

For both electric and magnetic exposure the problem simulation was formulated as fol-
lows. A conductive sphere of similar size and conductivity to those of the human body
(conductivity= 0.1 S/m, radius= 50 cm) was selected. With these parameters, at low fre-
quencies, the conduction current is much greater than the displacement current, and the
quasi-static approximations apply. The staircased sphere was centered in a computational
domain of size 110× 110× 110 cm, terminated on all sides by a PML (9, P, 60 dB). From
previous research [16], large errors are expected at the surface of the staircased sphere. Their
magnitude depends on the shape of the staircasing and conductivity contrast. To partially
mitigate these effects, subcell averaging of material parameters can be used in our FDTD
program.

As previously, a standing wave was created for magnetic or electric field excitation with
two waves of proper orientations traveling from the opposite directions on a line source.
The line was assumed oriented in thex-direction, centered 50 cm over the sphere, i.e.,
(yh, zh)= (55 cm, 155 cm). Source function parameter values were chosen to simulate a
1 A (peak) current of 60 Hz in the magnetic field case. For the electric field case, source
function parameters were chosen to simulate a field of 1000 V/m in the absence of the
sphere at the center of the domain (1 m from the line); this corresponds to a line charge
density ofρ = 2000πε0 C/m. Simulations were performed with a grid resolution of 1 cm.
Steady state was reached after 2000 time steps.

3.2.1. Magnetic induction.Figures 3–5 show the individual calculated field compo-
nents at representative cross-sections in the three directions, along with the corresponding
analytic solution for comparison. It is apparent that the field spatial distributions are very
similar, except in some cases (especially theEz andEy fields). The high field values in the
numerical solution tend to obscure the visual representation of the actual field distribution.
Figure 6 shows the total field(Etot= E2

x + E2
y + E2

z

√
) distribution throughout the sphere,

which is in excellent agreement with the analytic solution. Point-by-point relative errors
were examined, with the result that the locations of high relative error are concentrated at
the surface of the sphere. There are large relative errors at the very center also that are asso-
ciated with zero field value in the analytic solution. Thus a computed field there, however
small, represents an infinitely large relative error.
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FIG. 3. Magnetic induction in a lossy sphere from a 60-Hz line source (1000 V/m atr = 1 m)—Induced
Ex-field (inµV/m) for cross sections in the three principal planes (computed vs analytic).

Table II provides a more quantitative evaluation of the errors. The computed maximum
field is much greater than the analytic maximum field. However, the average field is very
close to the analytic average field, as is the RMS. Relative errors in the total fields are larger
in the upper half of the sphere compared to the lower half and range around 25–30% on
average at the surface of the sphere. Relative errors in the total fields at interior points are
less than 0.5%, in general. The last row in the table represents the maximum error in the
respective fields, computed point by point.

Combining the qualitative and quantitative results, the following observations can be
made: the quasi-static FDTD method with the line source accurately models the induced
field distribution and field values in the interior of lossy objects, but field values close to
object boundaries are overpredicted by up to 33%.
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TABLE II

Computed vs Analytic Results for Magnetic Induction—No

Subcell Averaging

Maximum Average RMS

Computed total electric field (µV/m) 37.778 11.142 12.162
Analytic total electric field (µV/m) 28.502 11.138 12.154
% Difference(| computed-analytic

analytic
| × 100) 33% 0.03% 0.07%

Error field (|computed-analytic|) (µV/m) 10.404 0.0811 0.377

FIG. 4. Magnetic induction in a lossy sphere from a 60-Hz line source (1000 V/m atr = 1 m)—Induced
Ey-field (inµV/m) for cross sections in the three principal planes (computed vs analytic).
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FIG. 5. Magnetic induction in a lossy sphere from a 60-Hz line source (1000 V/m atr = 1 m)—Induced
Ez-field (inµV/m) for cross sections in the three principal planes (computed vs analytic).

The problem of large errors at the boundaries of the staircased sphere are a direct result
of the staircasing, causing enforcement of the boundary conditions different from the orig-
inal object, and the abrupt transition in material properties. This abrupt transition can be
mitigated by the use of subcell averaging of material properties in the preprocessing stage
of a FDTD simulation. Subcell averaging can best be understood by imagining an offset
2-dimensional grid near a particular field location, with that field location at the centre of its
corresponding offset grid space. This offset grid is then subdivided intoN equal sections.
The material parameter assigned to the indexed field location is the weighted average of
the material properties in the centre of each subdivision. In the case of the homogeneous
sphere of interest, the effect is to create a layer at the boundary whose conductivity values
range from 0 to 0.1 S/m.



94 POTTER, OKONIEWSKI, AND STUCHLY

FIG. 6. Magnetic induction in a lossy sphere from a 60-Hz line source (1000 V/m atr = 1 m)—Induced
Etot-field (inµV/m) for cross sections in the three principal planes (computed vs analytic).

Table III provides the quantitative look at the errors with subcell averaging ofN= 2 and
N= 8. It is evident that the computed maximum field is larger than the analytic maximum
field (18.7% withN= 2, 5.5% withN= 8), but less than that with no averaging. The average
field is still very close to the analytic average field, as is the RMS. The absolute and relative
errors have been reduced, meaning more accurate prediction of fields point by point. The
relative errors are still larger in the upper half of the sphere compared to the lower half, but
have reduced overall. For instance, on the sphere boundary the relative errors range from
15–25% on average.

The conclusion that can be made at this point is that simulations for magnetic induction
using subcell averaging produce more accurate results and can significantly improve the
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TABLE III

Computed vs Analytic Results for Magnetic Induction with Subcell Averaging

Maximum Average RMS

Subcell averaging N = 2 N = 8 N = 2 N = 8 N = 2 N = 8
Computed total electric field(µV/m) 33.824 30.079 11.196 11.233 12.215 12.253
Analytic total electric field(µV/m) 28.502 28.502 11.188 11.222 12.205 12.241
% Difference(| computed-analytic

analytic
| × 100) 18.7% 5.5% 0.07% 0.1% 0.08% 0.1%

Error field (|computed-analytic|) (µV/m) 8.689 3.131 0.0426 0.0109 0.195 0.0650

determination of maximum field values with higher levels of subcell averaging. Field values
at object boundaries are still overpredicted, but the error in these fields can be greatly
reduced.

3.2.2. Electric induction. The results for electric induction in the sphere are shown
qualitatively in Figs. 7–9. No figure is presented for theEx field, as the analytic solution
is zero everywhere. As is the case for magnetic induction, there are very large field values
on the surface of the sphere, but the errors are greater than for the magnetic field induction.
The field distributions are still matching to the analytic field configurations. Relative errors
are still highly concentrated on the surface of the sphere.

Table IV provides quantitative results. The computed maximum field is much greater
than the analytic maximum field. In this instance the location of maximum absolute error
is actually the location of maximum relative error and exists around the entire boundary of
the topmost part of the staircased sphere. That is the location of the maximum source field
as well. However, the average field is very close to the analytic average field, as is the RMS,
though the large errors in maximum values introduce larger errors in the RMS.

These results indicate that the FDTD method is not satisfactory at predicting maximum
induced fields, but is still valuable for predicting field distributions and average field values.
Previous research with plane wave sources has indicated that the method is still valuable
because the conductivity gradients in the interior of the human body model are not as great
as in the case considered here, in which the conductivity of free space is zero, representing an
infinite conductivity gradient at air–tissue interfaces [16]. No simulations were performed
with subcell averaging in the case of electric induction, as previous research showed that
the averaging actually increased the errors [16].

The large errors evident in electric field induction are mostly a result of the staircas-
ing approximation of smooth surfaces (this is elaborated in the following section). The

TABLE IV

Computed vs Analytic Results for Electric Induction—No

Post-Processing

Maximum Average RMS

Computed total electric field(µV/m) 489.21 103.23 105.46
Analytic total electric field(µV/m) 178.27 102.26 104.28
% Difference(| computed-analytic

analytic
| × 100) 174.4% 0.9% 1.1%

Error field(|Computed-analytic|) (µV/m) 310.93 1.542 5.639
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FIG. 7. Electric induction in a lossy sphere from a 60-Hz line source (1000 V/m atr = 1 m)—InducedEy-field
(in µV/m) for cross sections in the three principal planes (computed vs analytic).

immediate cause is the strict enforcement of boundary conditions. This may also be used
as a solution, given that the problem of interest represents a very good conductor in quasi-
static conditions. It is then reasonable to let tangential electric fields at the boundary be zero
(i.e., the limit for a perfect conductor). This is easily implemented in the postprocessing
of the data. The external boundary tangential electric field components are identified and
set to zero. As a result, the erroneously large computed fields are corrected, and hence the
accuracy of the prediction is improved for both the maximum and the average electric fields
induced.

Table V shows the results using postprocessing of the previous data for two different
grid resolutions. The postprocessing has reduced the maximum error significantly, and the
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TABLE V

Computed vs Analytic Results for Electric Induction—Surface Tangents Set to Zero

Maximum Average RMS

Grid resolution 1 cm 2 cm 1 cm 2 cm 1 cm 2 cm
Computed total electric field(µV/m) 224.18 385.45 98.68 104.22 102.50 106.62
Analytic total electric field(µV/m) 178.27 176.79 97.93 102.51 101.77 104.51
% Difference(| computed-analytic

analytic
| × 100) 25.8% 118% 0.8% 1.67% 0.7% 2.02%

Error field(|computed-analytic|) (µV/m) 68.12 208.99 1.042 2.679 2.023 7.714

FIG. 8. Electric induction in a lossy sphere from a 60-Hz line source (1000 V/m atr = 1 m)—InducedEz-field
(in µV/m) for cross sections in the three principal planes (computed vs analytic).
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FIG. 9. Electric induction in a lossy sphere from a 60-Hz line source (1000 V/m atr = 1 m)—Induced
Etot-field (inµV/m) for cross sections in the three principal planes (computed vs analytic).

average and RMS errors as well. Computed maximum fields are still overpredicted. It is
expected that by using a finer grid the errors can be further reduced. Since our computer
resources do not allow us to use a finer grid, we used a coarser grid of 2 cm to illustrate the
effect of the grid size. As expected, the errors increase for this coarser resolution.

3.2.3. Explanation of sources of error.Any staircasing approximation changes the ob-
ject’s actual shape and thus the discretized Maxwell’s equations enforce different fields at
the boundaries than for the actual object. The effects are noticed principally at locations
where there is a large discontinuity in material properties. In the FDTD, it is particularly
noticeable for the electric field, as the electric field components are always located on voxel
edges, where the object material properties change. Considering a sphere as an example, it
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is known that the tangential electric field must be continuous across the boundary, and the
normal electric flux density must be continuous. By introducing a staircase, we also force
continuity conditions which must adapt to abrupt changes in surface normal direction, hence
disrupting the expected distribution of fields; what is actually simulated is a building block
representation of the object.

For magnetic induction the staircasing forces induced currents to flow a path different
from that in a real sphere. High current density is artificially introduced in inner corners of
some voxels, resulting in higher than expected field values. For a sphere, the induced currents
near the surface would flow continuously around the smooth contour of the sphere. But in
the staircased sphere, currents near the surface are impeded by the step approximations.
Current flow is effectively constricted around inside corners, resulting in high current density
(overpredicted values). This is much like the flow of water near a right angle wedge that
lies in its path.

For electric induction, first consider that a very good, albeit imperfect, conductor is
simulated. As is known for conductors illuminated by incident electric fields, the induced
currents and charges tend to concentrate at sharp edges or corners, creating field singularities.
Although the sphere is smooth (and hence would show no charge singularities), simulations
actually model a staircased sphere which consists of multiple sharp corners. The results
from these simulations show that fields are highly overpredicted, as the program tries to
accurately reflect the true singularities that are expected at corners of a staircased object.

The errors in this work are of similar character and magnitude to those encountered for
plane wave excitation [16]. This has implications for any simulations involving studies
of more complicated lossy structures, since maximum field values for isolated volumetric
regions will be overpredicted if the region contains boundaries with high conductivity
gradients.

4. FIELD INDUCED IN THE HUMAN BODY

The quasi-static FDTD method with a line-source can be used to compute induced electric
fields and currents in the human body close to transmission lines, where the incident electric
field can no longer be considered uniform. A heterogeneous model of the human body is
based on MRI scans and has been developed from a head and torso model from [17] with
skin and limbs added in our laboratory. The original resolution of the model was 3.6 mm,
but for this research it was reduced to 7.2 mm by assigning to each coarse voxel the tissue
type most prevalent in the vicinity of the fine-scale model. In all computations thez-axis
of the coordinate system is from foot to head (vertical), thex-axis is from left to right, and
they-axis is from back to front. The various organs and tissues were assigned conductivity
ranging from 0.01 to 2.2 S/m, based on the most recent measurements. Detailed conductivity
values are given in [18]. Because the displacement current is negligible, relative permitti-
vity values were set to 1 for all material types to avoid relaxation effects.

4.1. Geometry of the Problem

The body model and the bounding box encompassing it were placed in contact with a
perfect ground plane. The remaining five sides were surrounded by four layers of free space
cells and PMLs (15, P, 40dB). This led to an overall computational domain of 114× 83×
264= 2,497,968 voxels. In order to initiate the proper analytic fields in the computational
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domains, four line-source functions had to be initiated: two for each of the real and image
source (as a result of the ground plane). As noted previously, two sources created the
standing wave condition for the electric field excitation. The source functions simulated
source (image) lines located 4 m above (below) the ground plane, oriented parallel to thex-
axis, and centred over the domain. The parameters of the functions were chosen to represent
a 60-Hz field, with a magnitude of 1 kV/m at the ground plane directly underneath the line.
All results presented scale linearly with amplitude and with frequency up to 100 kHz [5].

4.2. Results and Discussion

Steady state for this object was reached after 8000 time steps. The induced electric fields
at the end of the simulation were the data of interest and were analyzed as follows. First,
organ dosimetry data in terms of the induced electric field and current density maximums
and averages for organs of interest were determined and compared with comprehensive
organ dosimetry obtained previously in the case of a uniform 1-kV/m field. Most of the
organs chosen were those whose ratio of surface area to volume were suitable for analysis,
given that boundary field values are overestimated and may skew data. None of the data
was postprocessed in the manner discussed above (setting tangential surface fields to zero),
since it is the internal organs that are of interest. The results are shown in Table VI. The
uniform field used for comparison is 1 kV/m. All the values for the line source are higher,
by up to 40%, as is expected since the fields in the absence of the object are higher than
those of a uniform field.

It is informative to compare the ratio of the induced fields with the line source to that of
the uniform field and relate that to the fields that exist in the absence of the body for each
source, respectively. This is done in the following manner. For a particular organ a suitable
coordinate locationP is identified as an approximate centre of the organ. Then the ratio

TABLE VI

Organ Dosimetry for Electric Induction from 60-Hz Line Source at 4 m

over a Perfect Ground Plane

|E|max (mV/m) |J|max (mA/m) |E|avg (mV/m) |J|avg (mA/m)

Organ Line source Uniform Line source Uniform Line source Uniform Line source Uniform

Bowels 3.74 3.20 1.27 1.36 1.18 0.946 0.374 0.305
Brain 4.45 2.82 0.445 0.282 1.21 0.869 0.101 0.0727
Brain—gray 4.45 2.82 0.445 0.282 1.14 0.828 0.114 0.0828
Brain—white 2.80 2.22 0.168 0.133 1.32 0.940 0.0790 0.0564
Heart 3.18 2.19 0.318 0.219 1.49 1.07 0.149 0.107
Kidneys 2.75 2.43 0.275 0.242 1.38 1.03 0.138 0.103
Liver 4.07 2.69 0.285 0.188 1.76 1.26 0.123 0.0884
Lungs 3.23 2.30 0.259 0.184 1.36 1.01 0.108 0.0805
Muscle 27.6 23.5 9.65 8.21 1.47 1.32 0.515 0.462
Prostate 2.23 2.26 0.893 0.904 1.49 1.47 0.596 0.589
Spinal cord 3.55 2.23 0.355 0.223 1.29 1.08 0.129 0.108
Spleen 3.48 2.29 0.348 0.229 1.74 1.36 0.174 0.136
Stomach 1.63 1.33 0.815 0.666 0.854 0.684 0.427 0.342
Thyroid 1.14 0.962 0.572 0.481 0.911 0.819 0.456 0.410
Whole body 75.2 48.1 12.01 11.5 2.031 1.70 0.349 0.309
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TABLE VII

Ratios of Electric Fields induced by a Line Source to Those

of a Plane Wave, along with the Free-Space RatioRp

Organ RP ORa ORm

Bowels 1.084 1.249 1.169
Brain 1.218 1.389 1.578
Brain—gray matter 1.218 1.380 1.578
Brain—white matter 1.218 1.401 1.263
Heart 1.125 1.391 1.451
Kidneys 1.097 1.344 1.130
Liver 1.106 1.398 1.511
Lungs 1.131 1.343 1.405
Spleen 1.105 1.280 1.517
Stomach 1.106 1.334 1.225

(RP) of the field at that location in the absence of the body model to that of the uniform field
strength of 1 kV/m is computed. Next the organ maximum and average induced electric
field values for the line-source exposure and the uniform field exposure are compared, and
two other ratios ORa and ORm are constructed, representing the ratios for the organ average
and maximum values. Finally, these organ ratios are compared to the exposure field ratio
RP. The steps are thus as follows:

1. determine a midpoint,P;
2. at P, find the free-space field for the line-sourceEl (P);
3. determine the free-space ratioRP = (El (P))/1000 V/m;
4. determine organ ratios for maximum and average induced electric fields ORm and

ORa; and
5. compare organ ratios with free-space ratiosRP.

The results of this process are tabulated in Table VII. This process is informative because
the results obviously show that the induced field ratios are much larger than the free space
ratio at the position of every organ of interest. Where the free space ratioRP ranges from
108–120%, the organ ratios for both the average and the maximum induced fields are higher,
ranging from 116–160%.

Another calculation of interest is the total vertical current through each layer of the model.
This data is illustrated in Fig. 10, along with the corresponding vertical current previously
calculated for a uniform field of 1000 V/m. It is readily evident that the vertical current
predicted by exposure to the line source is slightly greater than that for the uniform field,
as is expected since the field at the head from the line source is approximately 20% higher
than that of the uniform field.

Finally it is useful to examine the maximum external electric field, or more importantly
the field enhancement factor. The field enhancement factor is a ratio of the external field
in the presence of the body to that in the absence of the body. The enhancement factor
predicted for the case of a uniform field is 16.8 [10]. In the present research for exposure to
a line source, the predicted enhancement factor is 19.0. It should be noted that the maximum
external field is likely to be overpredicted because of the staircasing approximation. Indeed,
visual inspection of the vertical layer where the maximum field occurs (at the top of the
head) shows a corona of high field values around the exterior, where a staircase edge occurs.
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FIG. 10. Total vertical current (as a function of height) of the human model on a ground plane, in an electric
field produced by a 60-Hz line source (1 kV/m at the ground).

But this error is consistent with and evident in the previous uniform field research as well,
since the same staircasing approximation is used.

5. CONCLUSIONS

An extension to the total–scattered field formulation of wave excitation in the FDTD has
been provided for line sources with TEM waves. The formulation based on the analytic
formulation of the incident field is rather straightforward and is of high accuracy even for a
coarse mesh. This formulation has been used in the recently developed quasi-static FDTD
method. A verification of the method against an analytic solution for a conductive sphere
in the proximity of a line source attests to its high accuracy. Finally, the combination of
the new nonuniform source formulation and the quasi-static FDTD provides an effective
tool for computations of induced electric fields and currents in the human body in close
proximity to high voltage transmission lines. Such situations occur in some locations in
the electric utility industries, and accurate evaluation of fields in the body is of importance,
particularly for persons with medical devices, e.g., cardiac pacemakers.



LOW FREQUENCY FDTD WITH LINE-SOURCES 103

ACKNOWLEDGMENT

The authors are grateful to Dr. T. W. Dawson for providing his computer code for computations of analytic
results reported here. This work was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC), BC Hydro, and the TransAlta Industrial Research Chair.

REFERENCES

1. E. Sonnendr¨ucker, J. J. Ambrosiano, S. T. Brandon, A finite element formulation of the Darwin PIC model
for use on unstructured grids,J. Comput. Phys.121, 281 (1995).

2. J. Van Bladel,Electromagnetic Fields(Hemisphere, New York, 1985).

3. K. S. Yee, Numerical solutions to initial boundary value problem involving Maxwell’s equations in isotropic
media,IEEE Trans. Antennas Propag.14, 302 (1966).

4. A. Taflove,Computational Electrodynamics: The Finite Difference Time Domain Method(Artech House,
Norwood, MA, 1995).

5. J. DeMoerloose, T. W. Dawson, and M. A. Stuchly, Applicationi of the finite difference time domain algorithm
to quasi-static field analysis,Radio Sci.32, 329 (1997).

6. J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves,J. Comput. Phys.114,
185 (1994).

7. J. DeMoerloose and M. A. Stuchly, Reflection analysis of PML ABC’s for low-frequency applications,IEEE
MGWL6(4), 177 (1996).

8. J. P. Berenger, An effective PML for absorption of evanescent waves in waveguides,IEEE MGWL8(5), 188
(1998).

9. S. Gedney, An anisotropic PML absorbing media for the FDTD simulation of fields in lossy anisotropic media,
Electromagnetics16, 399 (1996).

10. T. W. Dawson, J. DeMoerloose, and M. A. Stuchly, Hybrid finite-difference method for high-resolution
modeling of low-frequency electric induction in humans,J. Comput. Phys.136, 640 (1997).

11. M. E. Potter, M. Okoniewski, and M. A. Stuchly, Extension of the FDTD method to non-uniform excitations,
Elec. Lett.34, 2216 (1998).

12. T. W. Dawson and M. A. Stuchly, High resolution organ dosimetry for human exposure to low frequency
magnetic fields,IEEE Trans. Magn.34, 708.

13. J. Stratton,Electromagnetic Theory(McGraw-Hill, New York/London, 1941).

14. T. W. Dawson, Low-frequency induction in a homogeneous sphere by line-sources Part I, Formulation and
line current excitation,Radio Sci.(2000), in press.

15. T. W. Dawson, Low-frequency induction in a homogeneous sphere by line-sources Part II, Line charge
excitation and discussion,Radio Sci.(2000), in press.

16. EPRI,Validation of Computational Methods for Evaluation of Electric Fields and Currents Induced in Humans
Exposed to Electric and Magnetic Fields, Electric Power Research Institute (EPRI) Report TR-111768 (EPRI,
Palo Alto CA, 1998).

17. I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. R. Gindi, and P. H. Hoffer, Computerized three-
dimensional segmented human anatomy,Phys. Med. Biol.21, 299 (1994).

18. R. L. S. Gabriel and C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the
dielectric spectrum of tissues,Phys. Med. Biol.41, 2271 (1996).


	1. INTRODUCTION
	2. THEORY
	FIG. 1.
	FIG. 2.

	3. METHOD VERIFICATION
	TABLE I
	FIG. 3.
	TABLE II
	FIG. 4.
	FIG. 5.
	FIG. 6.
	TABLE III
	TABLE IV
	FIG. 7.
	TABLE V
	FIG. 8.
	FIG. 9.

	4. FIELD INDUCED IN THE HUMAN BODY
	TABLE VI
	TABLE VII
	FIG. 10.

	5. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

